由于慣性系無法定義,愛因斯坦將相對性原理推廣到非慣性系,提出了廣義相對論的第一個原理:廣義相對性原理。其內容是,所有參考系在描述自然定律時都是等效的。這與狹義相對性原理有很大區別。在不同參考系中,一切物理定律完全等價,沒有任何描述上的區別。但在一切參考系中,這是不可能的,只能說不同參考系可以同樣有效的描述自然律。這就需要我們尋找一種更好的描述方法來適應這種要求。通過狹義相對論,很容易證明旋轉圓盤的圓周率大于3。14。因此,普通參考系應該用黎曼幾何來描述。第二個原理是光速不變原理:光速在任意參考系內都是不變的。它等效于在四維時空中光的時空點是不動的。當時空是平直的,在三維空間中光以光速直線運動,當時空彎曲時,在三維空間中光沿著彎曲的空間運動。可以說引力可使光線偏折,但不可加速光子。第三個原理是最著名的等效原理。質量有兩種,慣性質量是用來度量物體慣性大小的,起初由牛頓第二定律定義。引力質量度量物體引力荷的大小,起初由牛頓的萬有引力定律定義。它們是互不相干的兩個定律。慣性質量不等于電荷,甚至目前為止沒有任何關系。那么慣性質量與引力質量(引力荷)在牛頓力學中不應該有任何關系。然而通過當代最精密的試驗也無法發現它們之間的區別,慣性質量與引力質量嚴格成比例(選擇適當系數可使它們嚴格相等)。廣義相對論將慣性質量與引力質量完全相等作為等效原理的內容。慣性質量聯系著慣性力,引力質量與引力相聯系。這樣,非慣性系與引力之間也建立了聯系。那么在引力場中的任意一點都可以引入一個很小的自由降落參考系。由于慣性質量與引力質量相等,在此參考系內既不受慣性力也不受引力,可以使用狹義相對論的一切理論。初始條件相同時,等質量不等電荷的質點在同一電場中有不同的軌道,但是所有質點在同一引力場中只有唯一的軌道。等效原理使愛因斯坦認識到,引力場很可能不是時空中的外來場,而是一種幾何場,是時空本身的一種性質。由于物質的存在,原本平直的時空變成了彎曲的黎曼時空。在廣義相對論建立之初,曾有第四條原理,慣性定律:不受力(除去引力,因為引力不是真正的力)的物體做慣性運動。在黎曼時空中,就是沿著測地線運動。測地線是直線的推廣,是兩點間最短(或最長)的線,是唯一的。比如,球面的測地線是過球心的平面與球面截得的大圓的弧。但廣義相對論的場方程建立后,這一定律可由場方程導出,于是慣性定律變成了慣性定理。值得一提的是,伽利略曾認為勻速圓周運動才是慣性運動,勻速直線運動總會閉合為一個圓。這樣提出是為了解釋行星運動。他自然被牛頓力學批的體無完膚,然而相對論又將它復活了,行星做的的確是慣性運動,只是不是標準的勻速圓周而已。